Preamble
Below is a list of data types available in Oracle/PLSQL, which includes character, numeric, date/time, Boolean LOB, RowId data types.
Symbolic data types
Below are the character data types in Oracle/PLSQL:
| Data Types | Size | Description |
| char(size) | Maximum size is 2000 bytes. | Where the size is the number of characters of a fixed length. If the stored value is shorter, it is supplemented with spaces; if it is longer, an error is generated. |
| nchar(size) | Maximum size is 2000 bytes. | Where Size – the number of characters of fixed length in Unicode encoding. If the stored value is shorter, it is supplemented with spaces; if it is longer, an error is generated. |
| nvarchar2(size) | Maximum size is 4000 bytes. | Where Size – number of saved characters in Unicode encoding of variable length. |
| varchar2(size) | Maximum size is 4000 bytes. Maximum size in PLSQL is 32KB. |
Where Size – number of saved characters of variable length. |
| long | The maximum size is 2GB. | Symbolic data of variable length. |
| raw | Maximum size is 2000 bytes. | Contains binary data of variable length. |
| long raw | The maximum size is 2GB. | Contains binary data of variable length. |
Application: Oracle 9i, Oracle 10g, Oracle 11g, Oracle 12c
Numerical data types
Below are the numeric data types in Oracle/PLSQL:
| Data Types | Size | Description |
| number(accuracy,scale) | The accuracy can be in the range of 1 to 38. The scale can be in the range of -84 to 127. |
For example, number (14.5) is a number that has 9 decimal places and 5 decimal places.
|
| numeric(accuracy,scale) | The accuracy can be in the range of 1 to 38. |
For example, numeric(14,5) is a number that has 9 decimal places and 5 decimal places.
|
| dec(accuracy,scale) | The accuracy can be in the range of 1 to 38. |
For example, dec (5,2) is a number that has 3 digits before the decimal point and 2 digits after.
|
| decimal(accuracy,scale) | The accuracy can be in the range of 1 to 38. |
For example, decimal (5,2) is a number that has 3 digits before the decimal point and 2 digits after.
|
| PLS_INTEGER | Integer numbers ranging from -2,147,483,648 to 2,147,483,647 |
PLS_INTEGER value requires less memory and faster NUMBER values.
|
| Maximum size is 2000 bytes. | Contains binary data of variable length. | |
| long raw | The maximum size is 2GB. | Contains binary data of variable length. |
Application: Oracle 9i, Oracle 10g, Oracle 11g, Oracle 12c
Date/time data types
Below are the date/time data types in Oracle/PLSQL:
| Data Types | Size |
| date | The date may take values from 1 January 4712 BC to 31 December 9999 AD. |
Application: Oracle 9i, Oracle 10g, Oracle 11g, Oracle 12c
Large objects (LOB) data types
The LOB data types in Oracle/PLSQL are listed below:
| Data Types | Size | Description |
| bfile | Maximum file size 4 GB. |
File locators, points to the binary file in the server file system (outside the database).
|
| blob | Stores up to 4 GB of binary data. | Stores unstructured binary large objects. |
| clob | Stores up to 4 GB of character data. | Stores single-byte and multi-byte character data. |
| nclob | Stores up to 4 GB of character text data. | Saves data in unicode encoding. |
Application: Oracle 9i, Oracle 10g, Oracle 11g, Oracle 12c
Rowid data type
The Rowid data types in Oracle/PLSQL are listed below:
| Data Types | Format | Description |
| rowid | The format of the line:BBBBBB.RRRR.FFFFF, Where BBBBB is a block in a database file; RRRR is a string in a block; FFFFF is a database file. |
Fixed-length binary data. Each record in the database has a physical address or rowid.
|
Boolean (BOOLEAN) data types
| Data Types | Format | Description |
| BOOLEAN | TRUE or FALSE. Can take value NULL |
Stores logical values that you can use in logical operations.
|
Application: Oracle 9i, Oracle 10g, Oracle 11g, Oracle 12c
Oracle SQL Tutorial; Intro to Data Types
About Enteros
Enteros offers a patented database performance management SaaS platform. It proactively identifies root causes of complex business-impacting database scalability and performance issues across a growing number of clouds, RDBMS, NoSQL, and machine learning database platforms.
The views expressed on this blog are those of the author and do not necessarily reflect the opinions of Enteros Inc. This blog may contain links to the content of third-party sites. By providing such links, Enteros Inc. does not adopt, guarantee, approve, or endorse the information, views, or products available on such sites.
Are you interested in writing for Enteros’ Blog? Please send us a pitch!
RELATED POSTS
Scaling Digital Banking with Confidence: AI SQL and Performance Intelligence by Enteros
- 5 February 2026
- Database Performance Management
Introduction Digital banking has moved from being a competitive differentiator to a baseline expectation. Customers now demand real-time payments, instant account access, personalized financial insights, always-on mobile experiences, and seamless digital onboarding—without delays, downtime, or friction. Behind these experiences lies an increasingly complex technology foundation. Core banking modernization, cloud-native digital platforms, open banking APIs, AI-powered … Continue reading “Scaling Digital Banking with Confidence: AI SQL and Performance Intelligence by Enteros”
Turning Database Performance into Revenue Intelligence: Enteros for US Financial Enterprises
Introduction In the US financial services market, technology performance is no longer just an IT concern—it is a direct driver of revenue, customer trust, and competitive advantage. Banks, fintechs, capital markets firms, insurers, and payments providers all operate in an environment defined by real-time transactions, digital-first customer expectations, regulatory scrutiny, and relentless pressure to improve … Continue reading “Turning Database Performance into Revenue Intelligence: Enteros for US Financial Enterprises”
AI Model–Powered Database Optimization for Real Estate: Performance Management and Cost Attribution with Enteros
- 4 February 2026
- Database Performance Management
Introduction The real estate sector is undergoing a profound digital transformation. Property management platforms, digital leasing systems, smart building technologies, tenant experience apps, AI-driven valuation models, ESG reporting tools, and real-time analytics now form the backbone of modern real estate enterprises. Behind every one of these systems lies a complex database ecosystem—supporting high transaction volumes, … Continue reading “AI Model–Powered Database Optimization for Real Estate: Performance Management and Cost Attribution with Enteros”
Accurate Cost Estimation for Telecom Databases: How Enteros Aligns AIOps and Performance Intelligence
Introduction Telecom organizations are operating at an unprecedented scale. 5G rollouts, digital service platforms, real-time billing systems, subscriber analytics, IoT connectivity, and AI-driven customer engagement have pushed data volumes and transaction complexity to new extremes. Yet while networks continue to modernize, database economics remain poorly understood. Most telecom leaders know their cloud bills are rising. … Continue reading “Accurate Cost Estimation for Telecom Databases: How Enteros Aligns AIOps and Performance Intelligence”