SQL Server data types

The definition of a SQL Server data type can be a quick reference for a user of a particular column or variable. The data type of a column or variable is a reference for a user of a column or variable.
WHAT IS THE DATA TYPE?
If you were to create any table or variable, in addition to specifying a name, you also specify the type of data that it will store.
HOW TO USE MS SQL data types
1. Your data will be smoother and cleaner when you define its data type in advance.
The data type also limits the user from entering any unexpected or invalid data.
2. You can put your best foot forward by utilizing system memory effectively. Set the appropriate data type for variables and columns, and your system will only allocate the amount of memory needed.
3. MS SQL offers wide-ranging data types, like dates, binary images, etc
WHY USE DATATYPES?
SQL Server data types offer a wide category of data types according to user needs. You can choose a data type that fits your need. There’s also a variety of dates, binary images, etc:
1) The Name/Surname will always be alphabetical.
2) The “Contact” will always be numeric.

3) From the above figure, you should specify “Name/Surname” as a symbol and “Contact” as an integer.
Obviously, in any application, all fields have one or the other data type. For example, numerical, alphabetic, date, and much more.
Another thing to note is that different SQL Server data types have different memory requirements. So it makes sense to define a column or a variable with the type of data it will store for efficient memory usage.
THE DATA TYPE IS AVAILABLE IN MS SQL
MS SQL Server supports the following categories of data type:
- Exact number
- Approximate numerical
- Date and time
- Character strings
- Unicode Character Strings
- Binary rows
- Other types of data

EXACT NUMBER
These are the data types that will be described below.
Accurate numeric data types
| Data type | Description | Lower limit | Upper limit | Memory |
|---|---|---|---|---|
| BIGINT | It stores integers in the specified range | -2 ^ 63 (-9 223 372, 036 854 775 808) | 2 ^ 63−1 (−9 223 372, 036 854 775 807) | 8 bytes |
| INT | It stores integers in the specified range | −2 ^ 31 (-2,147, 483,648) | 2 ^ 31−1 (-2,147, 483,647) | 4 bytes |
| SMALLINT | It stores integers in the specified range | −2 ^ 15 (−32,767) | 2 ^ 15 (−32 768) | 2 bytes |
| TINYINT | It stores integers in the specified range | 0 | 255 | 1 byte |
| a little | Can take values 0, 1 or NULL | 0 | 1 | 1 byte / 8-bit column |
| decimal | Used for numbers and fixed precision numbers | -10 ^ 38 + 1 | 10 ^ 381-1 | 5 to 17 bytes |
| numeric | Used for numbers and fixed precision numbers | -10 ^ 38 + 1 | 10 ^ 381-1 | 5 to 17 bytes |
| Money | Used monetary data | −922,337, 203, 685,477.5808 | +922,337, 203, 685,477.5807 | 8 bytes |
| small money | Used monetary data | -214,478.3648 | +214,478.3647 | 4 bytes |
EXAMPLES:
DECLARE @Datatype_Int INT = 2
PRINT @Datatype_Int
Exit: 2
Syntax: decimal (P, S)
Here you go,
- Accuracy
- S is the scale
Request:
DECLARE @Datatype_Decimal DECIMAL (3.2) = 2.31
PRINT @Datatype_Decimal
Output: 2.31
APPROXIMATE NUMERICAL
Empirical data is stored as approximate numbers and is mainly used in scientific calculations.
Approximate numeric data type
| Data type | Description | Lower limit | Upper limit | Memory | Accuracy |
|---|---|---|---|---|---|
| Float (n) | Used for a floating precision number | -1.79E + 308 | 1.79E + 308 | Depends on the value of n | 7 digits |
| real | Used for a floating precision number | -3.40E + 38 | 3.40E + 38 | 4 bytes | 15-digit |
Syntax: FLOAT [(n)]
Here n is the number of bits that are used to store a mantissa with a floating-point in a scientific record. By default, n is 53.
When a user defines a data type such as float, n should be between 1 and 53.
SQL Server handles n as one of two possible values. If 1 <= n <= 24, n is treated as 24. If 25 <= n <= 53, n is treated as 53.
Example of a query:
DECLARE @Datatype_Float FLOAT(24) = 22.1234
PRINT @Datatype_Float
Exit: 22.1234
DATE AND TIME
Date and time data is stored here:
Date and Time Data type
| Data type | Description | Storage Size | accuracy | Lower range | Upper Range |
|---|---|---|---|---|---|
| DateTime | Used to specify the date and time from January 1, 1753 to December 31, 9999. Accuracy is 3.33 milliseconds. | 8 bytes | Rounded in .000, .003, .007 steps | 1753-01-01 | 9999-12-31 |
| smalldatetime | Used to specify the date and time from 1 January 0001 to 31 December 9999. It has an accuracy of 100 nanoseconds | 4 bytes, corrected | 1 minute | 1900-01-01 | 2079-06-06 |
| date | Used for storage only dates from 1 January 0001 to 31 December 9999 | 3 bytes, corrected | 1 day | 0001-01-01 | 9999-12-31 |
| time | It is used to store only time values with an accuracy of 100 nanoseconds | 5 bytes | 100 nanoseconds | 00: 00: 00,0000000 | 23: 59: 59,9999999 |
| DateTimeOffset | Similar to the time data, but has a time zone offset | 10 bytes | 100 nanoseconds | 0001-01-01 | 9999-12-31 |
| datetime2 | Used to specify the date and time from 1 January 0001 to 31 December 9999 | 6 bytes | 100 nanoseconds | 0001-01-01 | 9999-12-31 |
Example of request:
DECLARE @Datatype_Date DATE = '2030-01-01'.
PRINT @Datatype_Date
Output: “2030-01-01”
CHARACTER STRINGS
This category refers to the type of characters. It allows the user to define a character SQL Server data types that can be fixed and variable in length. It has four types of data types.
Data type Character strings
| Data type | Description | Lower limit | Upper limit | Memory |
|---|---|---|---|---|
| CHAR | This is a string of characters with a fixed width. It stores no more than 8000 characters. | 0 characters | 8000 characters | n bytes |
| VARCHAR | This is a string of characters with a variable width | 0 characters | 8000 characters | n bytes+ 2 byte |
| VARCHAR (Max) | This is a string of characters with variable width. It stores no more than 1 073 741 824 characters. | 0 characters | 2 ^ 31 characters | n bytes + 2 byte |
| Text | This is a string of characters with variable width. It stores a maximum of 2 GB of text data. | 0 characters | 2 147 483 647 characters | n bytes + 4 byte |
Example of request:
DECLARE @Datatype_Char VARCHAR(30) = 'This is Character Datatype'.
PRINT @Datatype_Char
Conclusion: this is the character’s data type
UNICODE CHARACTER STRINGS
This category stores the entire range of Unicode characters, which uses UTF-16 encoding.
Unicode character string data types
| Data type | Description | Lower limit | Upper limit | Memory |
|---|---|---|---|---|
| NCHAR | This is a fixed-width Unicode string | 0 characters | 4000 characters | 2 times n bytes |
| NVARCHAR | This is a Unicode string of variable width | 0 characters | 4000 characters | 2 times n bytes+ 2 byte |
| NTEXT | This is a Unicode string of variable width | 0 characters | 1 073 741 823 symbol | 2 times the length of the line |
Example of request:
DECLARE @Datatype_nChar VARCHAR(30) = 'This is nCharacter Datype'.
PRINT @Datatype_nChar
Conclusion: this is nCharacter Datatype
BINARY STRING
This category contains a binary string of fixed and variable lengths.
Binary String Data Types
| Data type | Description | Lower limit | Upper limit | Memory |
|---|---|---|---|---|
| Binary | This is a binary string of fixed width. It stores a maximum of 8,000 bytes. | 0 byte | 8000 byte | n bytes |
| VARBINARY | This is a binary string of variable width. It stores a maximum of 8000 bytes. | 0 byte | 8000 byte | The actual length of entered data + 2 bytes |
| Image | This is a binary string of variable width. It stores a maximum of 2 GB. | 0 byte | 2 147 483 647 byte |
Example of request:
DECLARE @Datatype_Binary BINARY(2) = 12;
PRINT @Datatype_BinaryOutput: 0x000C
OTHER TYPES OF DATA
These are the other data types described below:
| Data type | Description |
|---|---|
| Cursor | Its output is the column sp_cursor_list and sp_describe_cursor. Returns the name of the cursor variable |
| String version | This version marks the rows in the table |
| hierarchyid`on | This data type represents the position in the hierarchy |
| Unique identifier | Conversion from a symbolic expression. |
| sQL_VARIANT | It stores the values of data types supported by the SQL server |
| XML | It stores XML data in a column |
| Type of spatial geometry | It represents data in a flat coordinate system |
| Type of spatial geography | It presents data in a circular coordinate system |
| Table | It stores a set of results for further processing |
INTERESTING FACTS!
The amount of data that the CHAR data type can hold is twice as large as the VARCHAR data type, which makes it twice as fast when receiving data.
SUMMARY:
- Each column in a table is defined by its content when creating the table.
- There are six categories, one of which is main. The other categories have subcategories. Nine subcategories are available to help distinguish them.
The views expressed on this blog are those of the author and do not necessarily reflect the opinions of Enteros Inc. This blog may contain links to the content of third-party sites. By providing such links, Enteros Inc. does not adopt, guarantee, approve, or endorse the information, views, or products available on such sites.
Are you interested in writing for Enteros’ Blog? Please send us a pitch!
RELATED POSTS
Scaling AI Without Overspend: How Enteros Brings Financial Clarity to AI Platforms
- 22 January 2026
- Database Performance Management
Introduction Artificial intelligence is no longer experimental. Across industries, AI platforms now power core business functions—recommendation engines, fraud detection, predictive analytics, conversational interfaces, autonomous decision systems, and generative AI applications. But as AI adoption accelerates, a critical problem is emerging just as fast: AI is expensive—and most organizations don’t fully understand why. Read more”Indian Country” … Continue reading “Scaling AI Without Overspend: How Enteros Brings Financial Clarity to AI Platforms”
AI-Native Database Performance Management for Real Estate Technology Enterprises with Enteros
Introduction Real estate has rapidly evolved into a technology-driven industry. From digital property marketplaces and listing platforms to smart building systems, valuation engines, CRM platforms, and AI-powered analytics, modern real estate enterprises run on data-intensive technology stacks. At the center of this transformation lies a critical foundation: databases. Every property search, pricing update, lease transaction, … Continue reading “AI-Native Database Performance Management for Real Estate Technology Enterprises with Enteros”
Driving RevOps Efficiency Through AI-Driven Database Optimization with Enteros
- 21 January 2026
- Database Performance Management
Introduction Revenue Operations (RevOps) has become the backbone of modern digital enterprises. By aligning sales, marketing, finance, and customer success, RevOps promises predictable growth, faster decision-making, and improved customer lifetime value. Yet, for many organizations, RevOps efficiency remains elusive. The missing link is often hidden deep within the technology stack: the database layer. Every revenue … Continue reading “Driving RevOps Efficiency Through AI-Driven Database Optimization with Enteros”
How Retail Companies Can Reduce Cloud Costs Through Database Optimization with Enteros
Introduction Retail has become one of the most data-intensive industries in the digital economy. Modern retailers rely on cloud-powered platforms to support omnichannel commerce, real-time inventory visibility, personalized recommendations, dynamic pricing, loyalty programs, supply chain optimization, and customer analytics. At the center of all these capabilities sits a critical layer: databases. Retail databases process millions … Continue reading “How Retail Companies Can Reduce Cloud Costs Through Database Optimization with Enteros”